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This paper presents an artificial neural network (ANN) based method for estimating
route travel times between individual locations in an urban traffic network. Fast and
accurate estimation of route travel times is required by the vehicle routing and sched-
uling process involved in many fleet vehicle operation systems such as dial-a-ride
paratransit, school bus, and private delivery services. The methodology developed in this
paper assumes that route travel times are time-dependent and stochastic and their means
and standard deviations need to be estimated. Three feed-forward neural networks are
developed to model the travel time behaviour during different time periods of the day-
the AM peak, the PM peak, and the off-peak. These models are subsequently trained and
tested using data simulated on the road network for the City of Edmonton, Alberta. A
comparison of the ANN model with a traditional distance-based model and a shortest
path algorithm is then presented. The practical implication of the ANN method is
subsequently demonstrated within a dial-a-ride paratransit vehicle routing and sched-
uling problem. The computational results show that the ANN-based route travel time
estimation model is appropriate, with respect to accuracy and speed, for use in real
applications.

Keywords: Artificial neural network; Travel time; Shortest path algorithm; Travel
distance function; Vehicle routing scheduling; Dial-a-ride paratransit
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26 L. FU AND L. R. RILETT

The estimation of travel time from one location (origin) to another
(destination), or O - D travel time, in a road traffic network is one of the
key components in the vehicle routing and scheduling process of many
fleet vehicle operations systems such as dial-a-ride paratransit, school
bus, and private delivery systems (Savelsberch and Sol, 1995; Bodin
et ah, 1983). Due to the inherent variation of urban traffic congestion,
weather conditions and traffic incidents, O-D travel times are time-
dependent (or dynamic) and stochastic. It has been increasingly
recognised that such variations may have important impacts on the
productivity and reliability of fleet vehicle operations and therefore
should be explicitly considered in the routing and scheduling models
(Dror and Powell 1993; Fus 1996). Explicit consideration of these
variations, however, requires a travel time estimation model that can
provide a fast and accurate estimation of the descriptors that represent
the dynamic and stochastic travel times. The primary objective of this
paper is to demonstrate the feasibility of using artificial neural networks
(ANN) for estimating the dynamic and stochastic O-D travel times
within a vehicle routing and scheduling process. The dynamic and
stochastic attributes of the O-D travel time are represented by the
mean and standard deviation of the O-D travel time, both of which are
a function of the time of day and the O-D locations.

In most of the existing vehicle routing and scheduling models, O - D
travel time has traditionally been modelled as being static (time-
independent) and deterministic in that a single value is used to re-
present the travel time between each O - D pair (Savelsberch and
Sol, 1995; Bodin et al., 1983). The methods used to estimate the O-D
travel time commonly involve two steps. First, the distance between
two locations is estimated based on location coordinates. In most
practical applications, either rectangular distance or Euclidean dis-
tance is used to approximate the O-D travel distance (Love, 1988;
Brimberg and Love, 1991). The estimate of the travel distance is then
divided by an average speed to obtain the O-D travel time estimate.
While it may be possible to extend this procedure to account for
the dynamic and stochastic variation of travel times, the accuracy of
the estimation will likely be in question because factors such as road
network topology and traffic congestion usually have a highly non-
linear impact on the O - D travel time.

1. INTRODUCTION
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ROUTE TRAVEL TIME ESTIMATION 27

A more accurate estimation method is to use a shortest path algo-
rithm to calculate the travel time between two locations when the
underlying road network and associated travel times or speeds on each
link is available. If both the mean and standard deviation of the route
travel time as functions of time of the day need to be estimated, the
corresponding link travel time data in the network must be provided
(Fu and Rilett, 1998). Apart from the need for such extensive network
data, the major obstacle for using this method is that it could be too
computationally intensive to be directly integrated in the routing and
scheduling process for solving large sized problems (Shen et ai, 1995),
as will also be demonstrated in this paper.

An intermediate method is to divide the service area into many small
zones and subsequently calculate the travel time between individual
zones using shortest path algorithms. Alternatively, the travel time be-
tween zones may be obtained based on past daily travel records, and
pre-stored in computer memory. A trip from an origin to a destination
would then be mapped as a trip from the zone where the origin is
located to the zone where the destination is located. Although this
method is potentially more efficient in terms of computational time,
computer storage may be an issue if the number of zones utilised is
large for more accurate representation of travel times between zones.
For example, if the area of study is divided into 2000 zones and the
time period of interest (e.g., 6:00am ~ 21:00) into 60 intervals (15
minutes per interval), the required computer memory to store both the
mean and standard deviation between all zones for all time intervals
would be in the order of 960 MB (= 20002 * 60 * 2 * 2 bytes).

Artificial Neural Networks (ANN) have become one of the most
popular techniques in the Artificial Intelligence (AI) field during the
last decade. The special architecture and computation mechanics
inherent in ANN models make them useful for a wide variety of tasks
such as image processing, pattern recognition, and solving combina-
torial problems. ANN have been found to be very useful in modelling
the relationship between quantitative and qualitative inputs and their
related output. More detailed information may be found in other re-
ferences (Rumelhart, 1986). The potential of using an artificial neural
network to provide a quick and accurate estimation on the O —D
travel time is the focus of this paper.

This paper first proposes three feed forward neural networks to
model the O - D travel time behaviour (mean and standard deviation)
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28 L. FU AND L. R. RILETT

during the different time periods of a day: the AM peak, the PM peak
and the off peak. The paper then discusses how the input attributes
are identified, how the training data are represented, and how the
"best" ANN models are developed and identified. These analyses were
performed using data generated based on a traffic network for the
City of Edmonton, Alberta. A comparison of the ANN model with
the distance-based method and a shortest path algorithm is then
presented. Lastly, the practical implications of the ANN-based meth-
od is illustrated through its application in a dial-a-ride paratransit
vehicle routing and scheduling example.

2. NEUMAL NETWORK BASED TRAVEL TIME
ESTIMATION MODEL

This section examines the model building steps used to construct the
artificial neural network. The topology of the ANN model and
the representation of input and output data are first presented. The
training and testing procedures are then discussed.

2.1. ANN Network Topotogy

The ANN used in this analysis is known as a back-propagation neural
network and the general topology is illustrated in Figure 1. The ANN
consists of three layers with the neighbouring layers fully connected.
The output layer includes cells representing the variables to be
estimated - in this situation the O - D travel time. The input layer
represents factors which may have an impact on the O - D travel time.
These factors may include such information as the geographic loca-
tions of the origin and destination and the departure time at the origin.
The number of hidden nodes is a decision variable and determined
during the training and testing stage.

In a typical urban environment the day is typically classified into
three different time periods: the AM peak, the PM peak and the off
peak. In each case the link travel time patterns may differ significantly.
Instead of using a single ANN to map the travel time pattern for an
entire day, three separate ANN models are developed for these three
periods. The models developed are referred to as the AM Net, PM Net
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ROUTE TRAVEL TIME ESTIMATION 29

Information Extraction Input Output

Origin (so,yo)

Information on or

Distance Infformatfoi

O-D trav&l time

Information on destination
Destination (x^ ,yd)

Hidden Layer

FIGURE 1 ANN topology for O-D travel time estimation.

and OFF Net in this paper. For the purposes of this research the AM
peak was defined as lasting from 0600 to 0900 hrs, the PM peak was
defined as lasting from 1500 to 1900 hrs and all other time periods
belong to the off-peak period. In an actual implementation the
selection of the time periods, their duration, and their number
will obviously be a function of the data availability, the location of
interest, and the type of vehicles being routed/scheduled.

2.2. Data Representation

The representation of the data is one of the most important steps in the
development of a neural network model. There are two major steps
in the data representation process. The first step is to identify the
variables associated with the input and output as schematically illus-
trated in Figure 1. The output, O-D travel time (lod), is repre-
sented by an estimate of the mean O-D travel time (E[rod]) and
an estimate of the standard deviation of the O-D travel time
(S[?od])- While the standard deviation may not be required in the
routing and scheduling process it is useful to show the ability of ANN
to estimate additional O-D travel information. In addition, it would
be clearly advantageous to modify routing and scheduling algorithms
to take advantage of this information.

Two different network design options were examined with respect to
output estimation. The first option entailed using two separate neural
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30 L. FU AND L. R. RILETT

networks - one that was used for estimating the mean travel time and
another one for estimating the standard deviation about this mean.
In this option each network had one output cell. The second option
entailed using a single neural network to estimate both the mean
and standard deviation of the O-D travel time. In this situation two
output cells were required.

Two input scenarios were tested for selection of appropriate input
variables. The first, known as Scenario A, considered five input
attributes: the coordinates of the origin and destination locations, i.e.,
(xo,}>o) and (xd,)>i) in meters, and the departure time (TQ) in minutes
after midnight. This scenario attempted to capture location effects,
time of day effects, and to a limited degree, distance effects. In scenario
B, two extra variables representing the estimated distance are added to
those of Scenario A. These variables are directly related to the distance
between the origin location and the destination location and have been
historically used for distance estimation in the vehicle routing and
scheduling problem. These two variables are the rectangular distance
(/i, meters) and the Euclidean distance (l2, meters) from the origin
location to the destination location and are defined in Eqs. (1) and
(2) below.

h = \xo - xd\ + \y0 ~ yd\ (1)

h = s/(xo~xd)
2 + (yo~ydf (2)

Obviously, there are a number of possible combinations of inputs and
in an actual implementation this step would involve examining more
options.

The second step involved data normalisation. For the sake of
learning effectiveness, all the input data are scaled into values that
ranged between 0 and 1, while the outputs are scaled into values that
ranged from 0.2 to 0.8. This transformation ensures that the output
remains in the quasilinear part of the sigmoid function where learning
is faster (Gallant, 1993).

In order to evaluate the ability of the proposed ANN models in
capturing the O-D travel time patterns in a given urban area, the
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ROUTE TRAVEL TIME ESTIMATION 31

municipal area of the City of Edmonton is used as a test bed in this
paper. Ideally, the data used for training and testing the ANN should
be direct field collected O-D travel times that represents the "true"
travel time pattern in the area of interest. Because there were no such
data available for the modelling purposes of this research, simulated
travel time data based on the road network for the City of Edmonton
were used. The "true" travel time between two locations were assumed
to be the travel time on the shortest path between these locations in
the given road network and were calculated using a shortest path
algorithm. These travel time data were subsequently used in training,
testing and evaluating the ANN models. It should be noted that, while
the models developed in this study and the associated results are valid
only for demonstration purposes, the methodology and principles are
applicable for use when the appropriate field data become available.

The Edmonton network is composed of 3800 links and 1400 nodes
and used primarily for planning applications. The link length and
posted speed on the link are given as part of the network database.
Because the given network data is not sufficient for generating time-
dependent mean and standard deviation of route travel times, addi-
tional link travel time attributes were created. The dynamic and
stochastic travel time patterns in the network were represented by
hypothetical changes in the mean and standard deviation of travel
time on each link. The following section describes how these link travel
time data were created. It must be emphasised that the objective of
this to generated data which are reasonably representative of actual
condition and at the same time include as much variation as possible.
The goal is to see whether ANN can model the non-linear travel time
effects.

The urban area was divided into three sub-areas: Downtown,
Midtown and Suburban with link travel times in each of these areas
defined separately in order to consider the difference in the traffic
patterns between them. It was assumed the dynamic and stochastic
pattern on links in each area is the same and were defined in the
following manner. The mean link travel time during the off-peak
period is assumed to be equal to the link length divided by the posted
speed while during the peak periods the mean travel time increases
with percentages that are dependent on the area in which the link is
located. Figure 2 shows the dynamic profile of travel times defined for
the three sub-areas.
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32 L. FU AND L. R. RILETT

300

250

200-k

15 150-

i
JC 100

50-

AM peak Ofipeak PMpeak

Suburban

Time of day

FIGURE 2 Dynamic link travel time pattern.

TABLE I

Subdivision

Link
CV

: Travel Time

Link travel time

Downtown

1.0

CV in different

Midtown

0.5

sub-areas

Suburban

0.1

To generate the variation of the link travel time, it is assumed that
the coefficient of variation (noted as CV and defined as the ratio of the
standard deviation to the mean) of the link travel time is the same for
all links in the same sub-areas. Table I gives the hypothesised link
travel time CV for each sub-area. A larger value of CV is used for the
links in the central area of the city based on the fact that the network
has relatively more traffic controls and is denser. Given the mean and
CV of the link travel time, the standard deviation (or variance) of the
link travel time can then be determined. Note that, similar to the mean
travel time, the resulting standard deviation is also time-dependent.

The data required for both training and testing an ANN model
were developed as follows. The origin and destination locations of
individual O-D pairs were randomly generated. For each O-D pair,
six random departure times were generated during each of the AM,
PM and off-peak periods, respectively. It was found that this number
of departure times was sufficient to characterise the dynamic pattern of
travel time during both the AM and PM peak periods for the given
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ROUTE TRAVEL TIME ESTIMATION 33

network. For a network on which travel times change more rapidly,
more departure times may be necessary. Once the departure times were
identified, the means and standard deviations of the O - D travel times
were calculated by a shortest path algorithm (Fu and Rilett, 1998).
These data were then combined with the coordinate information for
each O-D pair to form the training data. Table II shows an example
of the training data for two O-D pairs.

2.4. Training, Testing and Results

The training of the neural network is done via the back-propagation
learning algorithm (Rumelhart, 1986) with the overall objective being
to find the "best" ANN to model the O-D travel time. The deter-
mination of the best ANN is commonly based on two criteria. The
first one is related to the learning speed which is reflected by the
number of iterations needed to completely train the neural network. In
this situation the lower the number of iterations the better the model
because it will require less computational effort. The second criteria is
the root mean square error (RMS) defined in Eq. (3) where the closer
the estimated data to the actual data, the lower the RMS and hence the
better the model.

RMS =
N*M v '

where:

N total number of O-D pairs to be trained;
M number of output cells;
Yft actual value at output cell / for example k;
Dki estimated value at output cell i for example k.

For the purpose of this research, all the ANN models were trained
using an off-line training program and therefore the time required to
train a ANN is not considered as part of the evaluation criterion.

Travel times of 1000 O-D pairs were used as training examples
and another 250 O—D pairs for testing. All these O—D pairs were
generated using the procedure discussed previously. It should be noted
that the number of O-D pairs required to train an ANN is a function
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Origin node
coordinates (xo, yo)
(meter)

(33814.1,34357.9)
(33268.2,37791.5)

TABLE II

Destination node
coordinate (x^, yd)

(meter)

(3011.3,43866.8)
(2891.0,37372.2)

Training data examples

Rectangular
distance (l{)

(meter)

40312.7
32237.4

(onginal data)

Euclidean
distance (l2)

(meter)

30796.5
30380.1

Departure
time (To)
(minutes)

394
511

Travel
time (tt)
(seconds)

3847
1427

! Total minutes elapsed since midniglit.D
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ROUTE TRAVEL TIME ESTIMATION 35

of the complexity of the travel time patterns that the ANN needs to
learn. In most situations, the inherent patterns are often hidden
and therefore a trial-and-error procedure is required. The procedure to
identify the best ANN included three steps. The first step was to
identify whether Scenario A or Scenario B gave the best results. It was
found that the ANN with Scenario B (7 inputs) was clearly superior
to that of Scenario A (5 inputs) in terms of both learning speed and
prediction quality. While this should not be surprising because the
former uses more input variables, it did indicate the importance of
using "processed" information in improving the learning ability and
training speed of an ANN model.

After selecting the input attributes, the second step identified the
best representation of the location information. The locations of
the origin and destination may be represented exactly by using their
geographic coordinates or approximately by using zonal coordinates.
The analysis showed that the two distance measures (/j, l2) appeared to
contain most of the distance information between the two locations
and that an approximate representation of the locations was adequate.
Therefore, the network area under analysis was uniformly divided into
a 1000 x 1000 grid and each origin and destination were assigned
to this grid system. It was found that using the exact coordinates
significantly reduced the learning speed with only a very minor im-
provement in model quality.

The final step was to decide on the optimum number of hidden
nodes for the two proposed network design options (i.e., separate
neural networks for estimating the mean and standard deviation and a
single combined neural network) and to subsequently identify the
preferred approach. As the first step, each model was trained with two
to twenty hidden nodes. It was found that the combined model
required much more hidden nodes in order to achieve the same level of
estimation quality as the separate models. Figures 3 and 4 shows the
estimated CV of the O-D travel time and the actual Q-D travel time
CV as a function of trip length from the separate ANN model with five
hidden nodes and the combined ANN model with ten hidden nodes.
The data were deliberately generated such that all the trips originated
from a single location in the downtown. It can be seen that the
separate neural network models achieved better results than the
combined neural network model. It can also be seen in Figure 4 that
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Actual value

Estimated value

1000 2000 3000

Trip length (seconds]

4000 5000

FIGURE 3 CV of O-D travel time by a joined network model: actual vs. estimated
value as a function of trip length.

Actual value

Estimated value

1000 2000 3000

Trip length (seconds!

4000 5000

FIGURE 4 CV of O-D travel time by a separate network model: actual vs. estimated
value as a function of trip length.

the combined neural network model over estimates the O-D travel
time variance for short trips, but provides good estimates for trips
longer than approximately 600 seconds. Based on these results it was
decided to use the separate neural network option.

The next step involved training and analysing the neural networks,
with two to twenty hidden nodes, for all three time periods. The neural
network with five hidden nodes was found to be adequate to model
both the AM and PM peak periods while a neural network with four
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ROUTE TRAVEL TIME ESTIMATION 37

hidden nodes gave the best results for the off-peak period. As an
example, the RMS as a function of the number of iterations for the
mean travel time AM Net (the so-called learning curve) is shown in
Figure 5.

The neural networks were subsequently tested on 250 randomly
generated Q-D pairs. Figure 6 illustrates the results from the O-D

UJ 0.06 --
tn
2 0.04 --

Testing error

1000

No. of Training Iterations

FIGURE 5 Learning progress curve for an AM net.

2000

6000

Mean prediction error: 264sec

1000 2000 3000 4000

Actual mean travel time (seconds)

FIGURE 6 Actual mean travel time vs. travel time predicted by the AM net.
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38 L. FU AND L. R. RILETT

travel time estimation model as compared to the actual mean O-D
travel time during the AM peak period. The average relative error
(the diiference between the estimated mean travel time with the actual
mean travel time divided by the actual mean travel time) was found
to be 12.1%. This relative error is equivalent to approximately 264
seconds for the average trip length of 2180 seconds.

In order to show the ability of the trained neural networks to model
the dynamics of the travel time during a day, the predicted mean travel
time and the actual mean travel time with different departure times
of day are compared in Figure 7. This shows these travel times for
two O-D trips, where the estimated value is from the three neural
networks. One trip is from the northwest of the Suburban area to the

"c 6000
8 5000 -
jo, 4000 -
03 3000--

M 2000 f
75 1000

(0 0

-Actualtravel tirtB

. Predicted travel time

6:00 AM 12:00 Noon

Time of day

6:00PM

so

1 6000 T
o 5000--
w, 4Q0Q--
© 3000
E 2000-I-'

-.43 ^

C 6:QQAM 12:00 Noon 6:00PM

Time of day

FIGURE 7 Actual travel time pattern vs. estimated travel time pattern: two O - D
pairs.
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ROUTE TRAVEL TIME ESTIMATION 39

south of the Mid-town area and another is from the south of the
town area to the Downtown area. It can be seen that the non-linear
relationship between the O—D travel time with time of day is tracked
relatively well by the neural networks.

3. COMPARISON OF ANN AND TRADITIONAL
METHODS

The comparison was based on the assumption that a rectangle and
Euclidean distance function would be used to represent the traditional
travel time estimation method, and that the shortest path algorithm
would be used to represent the exact approach. We should note that
the conclusions are by no means definitive and should be interpreted
qualitatively because the inputs between these methods are different
and better models may exist for the approximate method.

3.1. Distance-based Method

As discussed previously, the relationship between the O-D travel
time and location information has historically been estimated using
distance-based methods. In this approach, either the rectangular dis-
tance or the Euclidean distance is used to approximate the O —D
travel distance, which is then divided by an average speed to obtain
the travel time. It is therefore not "fair" to make a direct comparison
between the ANN model and the distance-based method because
the former uses more input variables than the later and therefore
should naturally be superior in performance. The following two
steps were therefore taken in order to make the comparison more
reasonable.

First, the off-peak period is deliberately selected as the modelling
period so that the non-linear impact of the departure time on the O-D
travel time can be removed. In addition, the travel times are assumed
to be deterministic and therefore an estimate of the standard deviation
of the O-D travel time is not required. As a result, the Q-D travel
estimation problem is effectively the same as the O-D travel dis-
tance estimation problem in which distance-based models have been
popularly applied.
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40 L. FU AND L. R. MLETT

Second, instead of using the rectangular distance or the Euclidean
distance, a regression analysis was conducted to obtain the direct
relationship between the O-D travel time and the influencing factors,
including the coordinates of the origin and destination, a set of vari-
ables transformed from the coordinates, and the rectangular and
Euclidean distances.

A total of 1000 O-D pairs were randomly generated in order to
develop the distance-based model and the new ANN models. In
addition, 800 randomly generated O - D pairs were used for testing.
The topology of the ANN model used to model the off-peak period is
the same as that shown in Figure 1 except that the departure time
input cell and standard deviation output cell are removed. The ANN
was trained following the procedure discussed previously using the
1000 O - D pairs.

A series of regression analyses were performed to establish the best
equation between the O-D travel time and the independent variables
listed above. It was found that there were no statistically significant or
meaningful relationship between the O-D travel time and any subset
of the coordinates variables and transformed variables. In addition, lx

and l2 were found to be statistically correlated and therefore should
not be included in the same regression equation. As a result, the fol-
lowing calibrated models were found best to represent the travel time
in the Edmonton network.

fed = 0.0558/i, i?2 = Q.8! (4)

(147.0) ( '

tod = 0.0690 l2, i?2-0.80
(152.2) ( )

where:

'od — travel time from origin (o) to destination (d), seconds;
h = rectangular distance (Eq. (1));
h — Euclidean distance (Eq. (2)).

Note that the values in brackets are the respective t - values. It may
be seen that the variable is significant at the 95% level and the model
explains a good deal of the variability. Note that the variable on the
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ROUTE TRAVEL TIME ESTIMATION 41

right hand side of Eqs. (4) and (5) is in units of distance and the output
variable on the left hand side is in units of time.

Both the trained ANN and the distance-based models were applied
to the test data and the results are summarised in Table III. It can be
seen that, with respect to both RMS and average relative estimation
error, the estimation errors of the distance-based model is approxi-
mately doubled as compared to the neural network model.

It should be pointed out that the neural network had additional
input variables and at first glance it appears that one cannot fairly
compare the results. However, it was not feasible to add the additional
information from both a statistical point of view and a practical
perspective to the regression equations. It is this flexibility in specifying
non-linear or correlated terms within the neural network that makes
them appealing for applications discussed within this paper. In addi-
tion, the coordinates would not impose an additional data collection
burden as they basically are already used as inputs in the traditional
approach.

3.2. Shortest Path Approach

The purpose of this section is to demonstrate the computational
efficiency of the ANN models as compared to the method of directly
using the shortest path algorithm to calculate travel time. The com-
parison is based on the Edmonton road network. A label setting
algorithm (LS) and A* algorithm elsewhere (Rilett et ah, 1994) are
used to find the expected minimum O-D travel times. All the

TABLE III Comparison of prediction error of ANN model and distance-based model

Data

Modeling data

Test data

Measurement

RMS (seconds)
Average relative
error' (%)

RMS (seconds)
Average relative
error* (%)

"relative error =

ANN model

162.5

10.9

182.5

12.2

jpredicted value —

Distance-based model

Rectangular
distance
(Eq. (4))

350.4

21.4

364.7

21.0

Euclidean
distance
(Eq. (5))

362.2

22.3

367.0

21.7

actual value|/actual value
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42 L. FU AND L. R. RILETT

programs in this study are coded in C+ + and executed on a Pentium-
II computer with a 300 MHz clock speed and 128 MB RAM. A total of
100,000 O-D pairs were randomly generated and their travel time are
estimated using the LS, A* and ANN approaches. The total CPU time
for each algorithm to calculate the travel times for the given number of
O-D pairs was recorded and the results are shown in Table IV. It can
be seen that the ANN is approximately 5.4 times faster than the LS
algorithm and 2.4 times faster than the A* algorithms. While the
computation time is not really an issue for a simple route calculation
when tens of thousands of calculations may be required (such as in a
vehicle routing and scheduling problem) then this saving can be
significant - and may offset the decrease in accuracy from using the
ANN. Furthermore, it should be noted that the speed of the shortest

TABLE IV Computation time of shortest path algorithms and the ANN model

Total CPU to calculate the trayel times of 100,000 OI5 pairs
Method {seconds)

LS algorithm 5.4
A* algorithm 2.4
ANN model 1.0

0.12

1000 2000 3000

O-D travel time (seconds)

4000 5000

FIGURE 8 The relationship between computation time and travel time: A* shortest
path algorithm.
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ROUTE TRAVEL TIME ESTIMATION 43

path algorithm depends on the size of the road network. It can be
expected that the relative efficiency of the ANN method as compared
to the shortest path algorithm would be much larger when more
detailed networks are used.

Another advantage of the ANN is that the time to compute the
O-D travel time is the same for all O-D pairs regardless of their
travel times. In contrast to the ANN model, the computation effort
of a shortest path algorithm increases as the O - D travel time in-
creases. Figure 8 shows the computation time of the A* as a function
of O-D travel time for the Edmonton network.

4. APPLICATION OF ANN O-D TRAVEL TIME
ESTIMATION TO THE DIAL-A-RIDE PARATRANSIT
VEHICLE ROUTING AND SCHEDULING PROBLEM

The objective of this section is to illustrate the application of the
proposed ANN based O-D travel time estimation method in a vehicle
routing and scheduling process. The vehicle routing and scheduling
problem used in this analysis is from a dial-a-ride or shared-ride
paratransit system although the technique is equally applicable for
any related problem. The sub-problems in this paper consist of the
subscriber dial-a-ride problem {subscriber DARP) and the real-time
dial-a-ride problem {real-time DARP). In the former situation the task
is to determine the assignment of all customers (or trips) to the
available vehicles and their respective routes and schedules. This task
is typically performed off-line and the users are informed some time
interval after the initial request. In the latter case the objective of
the process is to determine the assignment of a new customer into
the existing schedule of a vehicle in real-time and inform the users
whether their request can be handled at the same time it is made (e.g.,
within, say, sixty seconds). A related situation is one in which the
schedule has to be altered due to some external event. The detailed
formulation and description of the dial-a-ride vehicle routing and
scheduling problem with time-dependent and stochastic O-D travel
time can be found elsewhere (Fu, 1996). The algorithm used to solve
these two types of problem is a modified version of the traditional
trip insertion algorithm that allows the use of time-dependent and
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44 L. FU AND L. R. MLETT

stochastic O - D travel time (Bodin et al., 1983; Jaw et al.,
Fu, 1996).

The test problems were derived from the Disabled Adult Transpor-
tation System (DATS) in the City of Edmonton, Alberta. Data on the
weekday service (0600 ~ 2100 hrs) was obtained including 3000 trips of
which approximately 75% trips are wheel-chair trips and the rest are
ambulatories. Two sub-problems consisting of 500 and 1000 trips were
generated by randomly selecting trips from the 3000 trips. A leet of
106 vehicles is available to provide the service.

The origin and destination locations of the trips spread over the
municipal area of the City of Edmonton. The same network previously
described in Section 2.3 was used. The travel time on each link was
assumed to be time-independent and deterministic, and was deter-
mined based on the length of the link and the posted speed on the link.

The routing and scheduling objective is assumed to minimise the
expected total travel time. In Edmonton, the operating constraints con-
sists of a maximum ride time of 90 minutes and a maximum service
time deviation of 30 minutes to avoid excessive inconveniences to
clients.

The above routing and scheduling problems were all solved using
the same vehicle routing and scheduling algorithm but with the three
different O-D travel time estimation methods discussed in the pre-
vious sections. For the ANN method, a single ANN with five hidden
nodes was used to estimate the average travel time as needed in this
specific case. In order to make the comparison impartial, the actual
travel time used was based on the distance estimation method. That
is, an additional step of using the distance function to estimate the
travel time was included at the end of each of the three methods
and consequently the same travel time was used in the routing and
scheduling process. As a result, the schedules created by using those
three methods were exactly the same. Figure 9 shows the relationship
between the CPU time required to schedule all the trips as a function
of the problem size for each of the three different O - D travel time
estimation methods discussed in this paper. It can be seen that it
required over 160 minutes of CPU time to solve the 3000 trip problem
when the heuristic shortest path algorithm (A*) was used in the vehicle
routing and scheduling process. In contrast, the routing and sched-
uling algorithm with the ANN method solved the problem within
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ROUTE TRAVEL TIME ESTIMATION 45

Shortest path algorithm (A )

500 1000 1500 2000

Number of trips

2500 3000

FIGURE 9 Relationship between computational time and problem size- subscriber
DARP.

14 minutes of CPU time. This results in more than a ten times im-
provement over the approach using the SPP. As would be expected
because of its simplicity, the distance-based regression formula pro-
vides the computationally fastest results. However, as discussed in
Section 3, there is the possibility that the error in routing and sched-
uling would be higher because of its lower accuracy level.

In the real-time DARP the problem is relatively simple. Given that a
request has been received by the operator, the request needs to be
scheduled (or denied) in an acceptable time frame. The real-time
scheduling is simulated by assuming that the new request is to be
inserted into the existing schedules which were created by solving the
subscriber DARP discussed previously and that the sequences of the
original schedules are to be preserved. It was found that the CPU time
required to insert a new trip into the existing schedules with up to 3000
trips on them were all less than one second when the distance-based
and ANN-based O-D travel time estimation methods were used. This
finding implies that the ANN method is efficient enough to be used in
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46 L. FU AND L. R. RILETT

a real-time scheduling situation. When the heuristic shortest path
algorithm (A*) was used, it required an average CPU time of two
seconds to solve the 1000 trip problem and approximately eleven
seconds to solve the 3000 trip problem. While it appears to be feasible
in this case to use a shortest path algorithm in the real-time routing
and scheduling process, it could impose a problem if the underlying
road network is much larger and re-optimisation of the existing
schedules is required {e.g., exchange of trips between individual
schedules). Furthermore, it should be noted that in order for the SPP
approach to consider the dynamic and stochastic variations in travel
time, extensive link travel times would be required.

This paper introduced the concept of using ANN models for
estimating the time-dependent and stochastic O-D travel time in an
urban traffic network. Based on travel time samples from real network
data and simulated link travel time patterns, a variety of ANN models
were trained and evaluated. A detailed analysis of the performance
of the ANN models as compared to the shortest path algorithm and
distance-based methods was conducted. The main conclusions are
summarised as follows.

It was found that an ANN model can be trained to map effectively
the highly non-linear relationship between the O-D travel time and
their location information in time-dependent and stochastic traffic
networks. The success of an ANN technique for travel time estimation
mainly depends on how the input information was abstracted and
what type of network model was used. This study demonstrated that
some enhanced data (for example, distance information) can be very
helpful in improving the performance of an ANN, and that separate
estimation models for different parameters to be estimated are much
more effective than using a joined network model.

The solution quality of the ANN method was found to be
significantly better than the traditional distance-based model for
estimating O-D travel times. Therefore, better O - D estimates may
be obtained for routing and scheduling applications by using the
ANN O-D travel time estimation method instead of the traditional
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ROUTE TRAVEL TIME ESTIMATION 47

distance-based method. While the ANN is not as accurate as the
shortest path algorithms, it is much faster and independent of the size
of the road network. For the example used in this paper the ANN
was more than 500 times faster than the shortest path algorithms.
Therefore it is useful in situations where travel time calculations are
necessary but where the computation time is limited. The computa-
tional study showed that the ANN models proposed in this paper are
feasible for use in the dial-a-ride vehicle routing and scheduling
algorithm to solve realistic subscriber DARP and real-time DARP. On
the other hand, the shortest path algorithm was found to be viable
only in solving small problems, that is, problems with less than 50
trips.

Finally, it should be noted that there are other applications that
potentially could make use of an estimation method of O—D travel
times on time-dependent and stochastic networks. For example, it has
been shown that a bi-directional shortest path algorithm is often faster
than a uni-directional algorithm, but the former algorithm is only
applicable in networks where the travel times are static (Kuznetsov,
1993; Rilett et al., 1994). This is because in a time-dependent network,
the bi-directional algorithm requires exact information about the
departure time at an origin node and the arrival time at a destination
node. An accurate estimate of the O-D travel time may make it
possible to implement a bi-directional algorithm in a time-dependent
network by using an estimate of the arrival time as an input to the
process.

Funding for this research was supplied by the Natural Science
and Engineering Research Council of Canada and is gratefully
acknowledged.
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